Basit öğe kaydını göster

dc.contributor.authorHabibullin, İsmagil
dc.contributor.authorPEKCAN, ASLI
dc.contributor.authorZheltukhina, Natalya
dc.date.accessioned2021-03-06T11:56:08Z
dc.date.available2021-03-06T11:56:08Z
dc.date.issued2008
dc.identifier.citationHabibullin İ., Zheltukhina N., PEKCAN A., "On the classification of Darboux integrable chains", JOURNAL OF MATHEMATICAL PHYSICS, cilt.49, no.10, 2008
dc.identifier.issn0022-2488
dc.identifier.otherav_f172d8fc-44c2-452d-9628-df39d1b6c543
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/158415
dc.identifier.urihttps://doi.org/10.1063/1.2992950
dc.description.abstractWe study a differential-difference equation of the form t(x)(n + 1)=f (t(n),t(n + 1), t(x)(n)) with unknown t=t(n,x) depending on x and n. The equation is called a Darboux integrable if there exist functions F (called an x-integral) and I (called an n-integral), both of a finite number of variables x,t(n),t(n +/- 1),t(n +/- 2),..., t(x)(n), t(xx)(n),..., such that DxF=0 and DI=I, where D-x is the operator of total differentiation with respect to x and D is the shift operator: Dp(n)=p(n + 1). The Darboux integrability property is reformulated in terms of characteristic Lie algebras that give an effective tool for classification of integrable equations. The complete list of equations of the form above admitting nontrivial x-integrals is given in the case when the function f is of the special form f(x,y,z)=z + d(x, y). (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2992950]
dc.language.isoeng
dc.subjectFizik
dc.subjectTemel Bilimler
dc.subjectGenel Fizik
dc.subjectTemel Bilimler (SCI)
dc.subjectFİZİK, MATEMATİK
dc.titleOn the classification of Darboux integrable chains
dc.typeMakale
dc.relation.journalJOURNAL OF MATHEMATICAL PHYSICS
dc.contributor.departmentİhsan Doğramacı Bilkent Üniversitesi , ,
dc.identifier.volume49
dc.identifier.issue10
dc.contributor.firstauthorID652010


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster