dc.contributor.author | KITOVER, Arkady | |
dc.contributor.author | Duru, Hülya | |
dc.contributor.author | Orhon, Mehmet | |
dc.date.accessioned | 2021-03-06T10:49:41Z | |
dc.date.available | 2021-03-06T10:49:41Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Duru H., KITOVER A., Orhon M., "MULTIPLICATION OPERATORS ON VECTOR-VALUED FUNCTION SPACES", PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, cilt.141, ss.3501-3513, 2013 | |
dc.identifier.issn | 0002-9939 | |
dc.identifier.other | av_ec3718c2-c121-40a5-9157-7883feb3a884 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/155098 | |
dc.identifier.uri | https://doi.org/10.1090/s0002-9939-2013-11603-5 | |
dc.description.abstract | Let E be a Banach function space on a probability measure space (Omega, Sigma, mu). Let X be a Banach space and E(X) be the associated Kothe-Bochner space. An operator on E(X) is called a multiplication operator if it is given by multiplication by a function in L-infinity (mu). In the main result of this paper, we show that an operator T on E(X) is a multiplication operator if and only if T commutes with L-infinity (mu) and leaves invariant the cyclic subspaces generated by the constant vector-valued functions in E(X). As a corollary we show that this is equivalent to T satisfying a functional equation considered by Calabuig, Rodriguez, and Sanchez-Perez. | |
dc.language.iso | eng | |
dc.subject | Temel Bilimler (SCI) | |
dc.subject | Temel Bilimler | |
dc.subject | MATEMATİK, UYGULAMALI | |
dc.subject | Matematik | |
dc.subject | Bilgisayar Bilimleri | |
dc.title | MULTIPLICATION OPERATORS ON VECTOR-VALUED FUNCTION SPACES | |
dc.type | Makale | |
dc.relation.journal | PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY | |
dc.contributor.department | Community Coll Philadelphia , , | |
dc.identifier.volume | 141 | |
dc.identifier.issue | 10 | |
dc.identifier.startpage | 3501 | |
dc.identifier.endpage | 3513 | |
dc.contributor.firstauthorID | 42150 | |