Basit öğe kaydını göster

dc.contributor.authorEnsari, T.
dc.contributor.authorOdabasioglu, N.
dc.contributor.authorSayan, O. F.
dc.contributor.authorKavurucu, Y.
dc.contributor.authorHazar, M. A.
dc.date.accessioned2021-03-05T21:33:42Z
dc.date.available2021-03-05T21:33:42Z
dc.date.issued2018
dc.identifier.citationHazar M. A. , Odabasioglu N., Ensari T., Kavurucu Y., Sayan O. F. , "Performance analysis and improvement of machine learning algorithms for automatic modulation recognition over Rayleigh fading channels", NEURAL COMPUTING & APPLICATIONS, cilt.29, ss.351-360, 2018
dc.identifier.issn0941-0643
dc.identifier.othervv_1032021
dc.identifier.otherav_d982f433-cbd0-45f6-93c5-a7725906bcb7
dc.identifier.urihttp://hdl.handle.net/20.500.12627/143450
dc.identifier.urihttps://doi.org/10.1007/s00521-017-3040-6
dc.description.abstractAutomatic modulation recognition (AMR) is becoming more important because it is usable in advanced general-purpose communication such as, cognitive radio, as well as, specific applications. Therefore, developments should be made for widely used modulation types; machine learning techniques should be employed for this problem. In this study, we have evaluated performances of different machine learning algorithms for AMR. Specifically, we have evaluated performances of artificial neural networks, support vector machines, random forest tree, k-nearest neighbor, Hoeffding tree, logistic regression, Naive Bayes and Gradient Boosted Regression Tree methods to obtain comparative results. The most preferred feature extraction methods in the literature have been used for a set of modulation types for general-purpose communication. We have considered AWGN and Rayleigh channel models evaluating their recognition performance as well as having made recognition performance improvement over Rayleigh for low SNR values using the reception diversity technique. We have compared their recognition performance in the accuracy metric, and plotted them as well. Furthermore, we have served confusion matrices for some particular experiments.
dc.language.isoeng
dc.subjectAlgoritmalar
dc.subjectBilgisayar Bilimleri
dc.subjectMühendislik ve Teknoloji
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.subjectBilgisayar Bilimi
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.titlePerformance analysis and improvement of machine learning algorithms for automatic modulation recognition over Rayleigh fading channels
dc.typeMakale
dc.relation.journalNEURAL COMPUTING & APPLICATIONS
dc.contributor.departmentİstanbul Üniversitesi , ,
dc.identifier.volume29
dc.identifier.issue9
dc.identifier.startpage351
dc.identifier.endpage360
dc.contributor.firstauthorID253037


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster