Show simple item record

dc.contributor.authorBalestra, Costantino
dc.contributor.authorAydin, Salih
dc.contributor.authorADEMOĞLU, AHMET
dc.contributor.authorGermonpre, Peter
dc.contributor.authorMarroni, Alessandro
dc.contributor.authorPARLAK, İSMAİL BURAK
dc.contributor.authorEGİ, SALİH MURAT
dc.date.accessioned2021-03-05T20:42:33Z
dc.date.available2021-03-05T20:42:33Z
dc.identifier.citationPARLAK İ. B. , EGİ S. M. , ADEMOĞLU A., Balestra C., Germonpre P., Marroni A., Aydin S., "A Neuro-fuzzy Approach of Bubble Recognition in Cardiac Video Processing", International Conference on Digital Information and Communication Technology and Its Applications, Dijon, Fransa, 21 - 23 Haziran 2011, cilt.166, ss.277-279
dc.identifier.othervv_1032021
dc.identifier.otherav_d5708bf6-45f6-4fc8-b549-6d4dbf4aa29d
dc.identifier.urihttp://hdl.handle.net/20.500.12627/140841
dc.identifier.urihttps://doi.org/10.1007/978-3-642-21984-9_24
dc.description.abstract2D echocardiography which is the golden standard in clinics becomes the new trend of analysis in diving via its high advantages in portability for diagnosis. By the way, the major weakness of this system is non-integrated analysis platform for bubble recognition. In this study, we developed a full automatic method to recognize bubbles in videos. Gabor Wavelet based neural networks are commonly used in face recognition and biometrics. We adopted a similar approach to overcome recognition problem by training our system through real bubble morphologies. Our method does not require a segmentation step which is almost crucial in several studies. Our correct detection rate varies between 82.7-94.3%. After the detection, we classified our findings on ventricles and atria using fuzzy k-means algorithm. Bubbles are clustered in three different subjects with 84.3-93.7% accuracy rates. We suggest that this routine would be useful in longitudinal analysis and subjects with congenital risk factors.
dc.language.isoeng
dc.subjectBilgi Güvenliği ve Güvenilirliği
dc.subjectBiyoenformatik
dc.subjectDonanım
dc.subjectMühendislik ve Teknoloji
dc.subjectBİLGİSAYAR BİLİMİ, TEORİ VE YÖNTEM
dc.subjectBilgisayar Bilimleri
dc.subjectBİLGİSAYAR BİLİMİ, BİLGİ SİSTEMLERİ
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimi
dc.subjectBİLGİSAYAR BİLİMİ, DONANIM VE MİMARLIK
dc.titleA Neuro-fuzzy Approach of Bubble Recognition in Cardiac Video Processing
dc.typeBildiri
dc.contributor.departmentGalatasaray Üniversitesi , Mühendislik Ve Teknoloji Fakültesi , Bilgisayar Bilimleri
dc.identifier.volume166
dc.contributor.firstauthorID137821


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record