Show simple item record

dc.contributor.authorCanbaz, B.
dc.contributor.authorAtukeren, P.
dc.contributor.authorGumustas, K.
dc.contributor.authorKaynar, M. Y.
dc.contributor.authorTanriverdi, T.
dc.contributor.authorTuzgen, S.
dc.contributor.authorHanimoglu, H.
dc.contributor.authorKacira, T.
dc.contributor.authorSanus, G. Z.
dc.contributor.authorDashti, R.
dc.date.accessioned2021-03-02T22:17:20Z
dc.date.available2021-03-02T22:17:20Z
dc.date.issued2007
dc.identifier.citationTuzgen S., Hanimoglu H., Tanriverdi T., Kacira T., Sanus G. Z. , Atukeren P., Dashti R., Gumustas K., Canbaz B., Kaynar M. Y. , "Relationship between DNA damage and total antioxidant capacity in patients with glioblastoma multiforme", CLINICAL ONCOLOGY, cilt.19, sa.3, ss.177-181, 2007
dc.identifier.issn0936-6555
dc.identifier.othervv_1032021
dc.identifier.otherav_0bce6c72-cd8c-4cfd-a985-aa6490168caa
dc.identifier.urihttp://hdl.handle.net/20.500.12627/13612
dc.identifier.urihttps://doi.org/10.1016/j.clon.2006.11.012
dc.description.abstractAims: To assess oxidative DNA damage and total antioxidant capacity (TAC) in glioblastoma multiforme (GBM) and to compare the results with normal brain tissues. Materials and methods: Oxidative DNA damage and TAC were evaluated in GBM tissues extracted from 26 patients and in normal brain tissues of 15 subjects who underwent autopsy within the first 4 h of death. Oxidative DNA damage was assessed by measuring 8-hydroxy-2-deoxyguanosine (8-OH-dG) using the 8-OH-dG enzyme immunoassay kit, a quantitative assay for 8-OH-dG, and TAC was analysed using the ImAnOx colorimetric test system for the determination of antioxidative capacity. The results were compared between two groups and any correlation between 8-OH-dG and TAC was sought. Results: The median level of TAC in GBM (121.5 nmol/g wet tissue) was remarkably lower than that in normal brain tissue (298 nmol/g wet tissue). The difference was statistically significant (P = 0.00001). In contrast, oxidative DNA damage was significantly higher in patients with GBM (74.9 ng/g wet tissue) than in controls (34.71 ng/g wet tissue). Again, the difference was statistically significant (P = 0.00001). We also found a negative correlation between oxidative DNA damage and TAC (P < 0.001). Conclusions: These findings indicate that the degree of oxidative DNA damage is increased and TAC is decreased in GBM. Oxidative DNA damage is correlated with the levels of TAC.
dc.language.isoeng
dc.subjectSağlık Bilimleri
dc.subjectOnkoloji
dc.subjectDahili Tıp Bilimleri
dc.subjectİç Hastalıkları
dc.subjectTıp
dc.subjectKlinik Tıp (MED)
dc.subjectKlinik Tıp
dc.subjectONKOLOJİ
dc.titleRelationship between DNA damage and total antioxidant capacity in patients with glioblastoma multiforme
dc.typeMakale
dc.relation.journalCLINICAL ONCOLOGY
dc.contributor.department, ,
dc.identifier.volume19
dc.identifier.issue3
dc.identifier.startpage177
dc.identifier.endpage181
dc.contributor.firstauthorID89726


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record