Basit öğe kaydını göster

dc.contributor.authorKursun, Olcay
dc.contributor.authorAlptekin, Ahmet
dc.date.accessioned2021-03-05T18:46:38Z
dc.date.available2021-03-05T18:46:38Z
dc.date.issued2013
dc.identifier.citationAlptekin A., Kursun O., "MISS ONE OUT: A CROSS-VALIDATION METHOD UTILIZING INDUCED TEACHER NOISE", INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, cilt.27, 2013
dc.identifier.issn0218-0014
dc.identifier.otherav_cbf63849-c29b-441a-8ce9-17671e1b7123
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/135074
dc.identifier.urihttps://doi.org/10.1142/s0218001413510038
dc.description.abstractLeave-one-out (LOO) and its generalization, K-Fold, are among most well-known cross-validation methods, which divide the sample into many folds, each one of which is, in turn, left out for testing, while the other parts are used for training. In this study, as an extension of this idea, we propose a new cross-validation approach that we called miss-one-out (MOO) that mislabels the example(s) in each fold and keeps this fold in the training set as well, rather than leaving it out as LOO does. Then, MOO tests whether the trained classifier can correct the erroneous label of the training sample. In principle, having only one fold deliberately labeled incorrectly should have only a small effect on the classifier that uses this bad-fold along with K - 1 good folds and can be utilized as a generalization measure of the classifier. Experimental results on a number of benchmark datasets and three real bioinformatics dataset show that MOO can better estimate the test set accuracy of the classifier.
dc.language.isoeng
dc.subjectBilgisayar Bilimi
dc.subjectMühendislik ve Teknoloji
dc.subjectAlgoritmalar
dc.subjectBilgisayar Bilimleri
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.titleMISS ONE OUT: A CROSS-VALIDATION METHOD UTILIZING INDUCED TEACHER NOISE
dc.typeMakale
dc.relation.journalINTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE
dc.contributor.departmentİstanbul Üniversitesi , Mühendislik Fakültesi , Bilgisayar Mühendisliği
dc.identifier.volume27
dc.identifier.issue7
dc.contributor.firstauthorID74468


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster