Show simple item record

dc.contributor.authorRunde, Volker
dc.contributor.authorOztop, Serap
dc.contributor.authorSpronk, Nico
dc.date.accessioned2021-03-05T18:41:28Z
dc.date.available2021-03-05T18:41:28Z
dc.date.issued2012
dc.identifier.citationOztop S., Runde V., Spronk N., "Beurling-Figa-Talamanca-Herz algebras", STUDIA MATHEMATICA, cilt.210, ss.117-135, 2012
dc.identifier.issn0039-3223
dc.identifier.otherav_cb87e561-5ca5-4a3b-a567-6914aa712e1c
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/134809
dc.identifier.urihttps://doi.org/10.4064/sm210-2-2
dc.description.abstractFor a locally compact group G and p is an element of (1, infinity), we define and study the Beurling-Figa-Talamanca-Herz algebras A(p)(G, omega). For p = 2 and abelian G, these are precisely the Beurling algebras on the dual group (G) over cap. For p = 2 and compact G, our approach subsumes an earlier one by H. H. Lee and E. Samei. The key to our approach is not to define Beurling algebras through weights, i.e., possibly unbounded continuous functions, but rather through their inverses, which are bounded continuous functions. We prove that a locally compact group G is amenable if and only if one-and, equivalently, every-Beurling-Figa-Talamanca-Herz algebra A(p)(G, omega) has a bounded approximate identity.
dc.language.isoeng
dc.subjectMatematik
dc.subjectTemel Bilimler (SCI)
dc.titleBeurling-Figa-Talamanca-Herz algebras
dc.typeMakale
dc.relation.journalSTUDIA MATHEMATICA
dc.contributor.departmentUniversity Of Alberta , ,
dc.identifier.volume210
dc.identifier.issue2
dc.identifier.startpage117
dc.identifier.endpage135
dc.contributor.firstauthorID58401


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record