Show simple item record

dc.contributor.authorKuruoglu, Ercan E.
dc.contributor.authorKayabol, Koray
dc.contributor.authorSankur, Buelent
dc.date.accessioned2021-03-05T17:31:26Z
dc.date.available2021-03-05T17:31:26Z
dc.date.issued2009
dc.identifier.citationKayabol K., Kuruoglu E. E. , Sankur B., "Bayesian Separation of Images Modeled With MRFs Using MCMC", IEEE TRANSACTIONS ON IMAGE PROCESSING, cilt.18, ss.982-994, 2009
dc.identifier.issn1057-7149
dc.identifier.otherav_c5f860a1-7933-4d86-be2b-7c95fde9a59f
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/131262
dc.identifier.urihttps://doi.org/10.1109/tip.2009.2012905
dc.description.abstractWe investigate the source separation problem of random fields within a Bayesian framework. The Bayesian formulation enables the incorporation of prior image models in the estimation of sources. Due to the intractability of the analytical solution, we resort to numerical methods for the joint maximization of the a posteriori distribution of the unknown variables and pa rameters. We construct the prior densities of pixels using Markov random fields based on a statistical model of the gradient image, and we use a fully Bayesian method with modified-Gibbs sampling. We contrast our work to approximate Bayesian solutions such as Iterated Conditional Modes (ICM) and to non-Bayesian solutions of ICA variety. The performance of the method is tested on synthetic mixtures of texture images and astrophysical images under various noise scenarios. The proposed method is shown to outperform significantly both its approximate Bayesian and non-Bayesian competitors.
dc.language.isoeng
dc.subjectAlgoritmalar
dc.subjectMühendislik ve Teknoloji
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectBilgisayar Bilimleri
dc.subjectSinyal İşleme
dc.subjectMühendislik
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimi
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.titleBayesian Separation of Images Modeled With MRFs Using MCMC
dc.typeMakale
dc.relation.journalIEEE TRANSACTIONS ON IMAGE PROCESSING
dc.contributor.departmentConsiglio Nazionale delle Ricerche (CNR) , ,
dc.identifier.volume18
dc.identifier.issue5
dc.identifier.startpage982
dc.identifier.endpage994
dc.contributor.firstauthorID192325


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record