Basit öğe kaydını göster

dc.contributor.authorKursun, Olcay
dc.contributor.authorSakar, Betul Erdogdu
dc.contributor.authorSakar, C. Okan
dc.contributor.authorGurgen, Fikret
dc.contributor.authorDelil, Sakir
dc.contributor.authorApaydin, Hulya
dc.contributor.authorSertbas, Ahmet
dc.contributor.authorIsenkul, M. Erdem
dc.date.accessioned2021-03-05T17:11:03Z
dc.date.available2021-03-05T17:11:03Z
dc.date.issued2013
dc.identifier.citationSakar B. E. , Isenkul M. E. , Sakar C. O. , Sertbas A., Gurgen F., Delil S., Apaydin H., Kursun O., "Collection and Analysis of a Parkinson Speech Dataset With Multiple Types of Sound Recordings", IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, cilt.17, ss.828-834, 2013
dc.identifier.issn2168-2194
dc.identifier.othervv_1032021
dc.identifier.otherav_c4505a04-d7c3-4dc6-bb4a-a0eeb73a44c2
dc.identifier.urihttp://hdl.handle.net/20.500.12627/130199
dc.identifier.urihttps://doi.org/10.1109/jbhi.2013.2245674
dc.description.abstractThere has been an increased interest in speech pattern analysis applications of Parkinsonism for building predictive telediagnosis and telemonitoring models. For this purpose, we have collected a wide variety of voice samples, including sustained vowels, words, and sentences compiled from a set of speaking exercises for people with Parkinson's disease. There are two main issues in learning from such a dataset that consists of multiple speech recordings per subject: 1) How predictive these various types, e. g., sustained vowels versus words, of voice samples are in Parkinson's disease (PD) diagnosis? 2) How well the central tendency and dispersion metrics serve as representatives of all sample recordings of a subject? In this paper, investigating our Parkinson dataset using well-known machine learning tools, as reported in the literature, sustained vowels are found to carry more PD-discriminative information. We have also found that rather than using each voice recording of each subject as an independent data sample, representing the samples of a subject with central tendency and dispersion metrics improves generalization of the predictive model.
dc.language.isoeng
dc.subjectMühendislik ve Teknoloji
dc.subjectTemel Tıp Bilimleri
dc.subjectBİLGİSAYAR BİLİMİ, BİLGİ SİSTEMLERİ
dc.subjectBilgisayar Bilimi
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBİLGİSAYAR BİLİMİ, İNTERDİSİPLİNER UYGULAMALAR
dc.subjectMATEMATİKSEL VE ​​BİLGİSAYAR BİYOLOJİSİ
dc.subjectBiyoloji ve Biyokimya
dc.subjectYaşam Bilimleri (LIFE)
dc.subjectTIBBİ BİLİŞİM
dc.subjectKlinik Tıp
dc.subjectKlinik Tıp (MED)
dc.subjectTıp
dc.subjectSağlık Bilimleri
dc.subjectBiyoistatistik ve Tıp Bilişimi
dc.subjectBiyokimya
dc.subjectBilgisayar Bilimleri
dc.subjectBilgi Güvenliği ve Güvenilirliği
dc.subjectBilgisayar Grafiği
dc.subjectYaşam Bilimleri
dc.subjectBiyoinformatik
dc.subjectTemel Bilimler
dc.titleCollection and Analysis of a Parkinson Speech Dataset With Multiple Types of Sound Recordings
dc.typeMakale
dc.relation.journalIEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
dc.contributor.departmentBahçeşehir Üniversitesi , ,
dc.identifier.volume17
dc.identifier.issue4
dc.identifier.startpage828
dc.identifier.endpage834
dc.contributor.firstauthorID21954


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster