Basit öğe kaydını göster

dc.contributor.authorGenc, Hakka Murat
dc.contributor.authorPearson, Thomas
dc.contributor.authorÇataltepe, Zehra
dc.date.accessioned2021-03-05T15:27:04Z
dc.date.available2021-03-05T15:27:04Z
dc.identifier.citationGenc H. M. , Çataltepe Z., Pearson T., "<bold>A New PCA/ICA Based Feature Selection Method</bold>", IEEE 15th Signal Processing and Communications Applications Conference, Eskişehir, Türkiye, 11 - 13 Haziran 2007, ss.1174-1175
dc.identifier.othervv_1032021
dc.identifier.otherav_bbf9cc3d-be58-4d40-9c24-9f0890315656
dc.identifier.urihttp://hdl.handle.net/20.500.12627/124959
dc.description.abstractDimensionality reduction algorithms help reduce the classification time and sometimes the classification error of a classifier ([1], [2], [3], [4] ve [5]). For time critical applications, in order to have reduction in the feature acquisition phase, feature selection methods are more preferable to dimensionality reduction methods, which require measurement of all inputs. Traditional feature selection methods, such as forward or backward feature selection, are costly to implement. In this study, we introduce a new feature selection method that decides on which features to retain, based on how PCA (Principal Component Analysis) or ICA (Independent Component Analysis) [6] values those features. We compare the accuracy of our method to backward and forward feature selection with the same number of features selected and PCA and ICA using the same number of principal and independent components. For our experiments, we use spectral measurement data taken from corn kernels infested and not infested by fungi.
dc.language.isoeng
dc.subjectMühendislik
dc.subjectTELEKOMÜNİKASYON
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectSinyal İşleme
dc.subjectBilgisayar Bilimleri
dc.subjectAlgoritmalar
dc.subjectBiyoenformatik
dc.subjectBİLGİSAYAR BİLİMİ, TEORİ VE YÖNTEM
dc.subjectMühendislik ve Teknoloji
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimi
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.title<bold>A New PCA/ICA Based Feature Selection Method</bold>
dc.typeBildiri
dc.contributor.departmentTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) , ,
dc.contributor.firstauthorID133517


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster