dc.contributor.author | KARACOR, Adil Gursel | |
dc.contributor.author | UÇAN, Osman Nuri | |
dc.contributor.author | Sivri, Nüket | |
dc.date.accessioned | 2021-03-05T12:34:48Z | |
dc.date.available | 2021-03-05T12:34:48Z | |
dc.date.issued | 2007 | |
dc.identifier.citation | KARACOR A. G. , Sivri N., UÇAN O. N. , "Maximum stream temperature estimation of Degirmendere River using artificial neural network", JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, cilt.66, ss.363-366, 2007 | |
dc.identifier.issn | 0022-4456 | |
dc.identifier.other | vv_1032021 | |
dc.identifier.other | av_ade1efcf-e486-45bf-ba1e-758e059152f0 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12627/116013 | |
dc.description.abstract | Stream temperature determines the rate of the decomposition of organic matter and the saturation concentration of dissolved oxygen. Combined with industrial waste, stream temperature becomes a crucial parameter. Therefore, estimation of maximum stream temperature is very important, especially during summertime when the high temperatures may become dangerous for the habitat of rivers. A three-layered feed forward artificial neural network was developed to predict the maximum stream temperature of Degirmendere River for the five days ahead. Satisfactory results were achieved as the average prediction error turned out to be less than 1 degrees C. | |
dc.language.iso | eng | |
dc.subject | Mühendislik | |
dc.subject | Mühendislik ve Teknoloji | |
dc.subject | Harita Mühendisliği-Geomatik | |
dc.subject | MÜHENDİSLİK, MULTİDİSİPLİNER | |
dc.subject | Mühendislik, Bilişim ve Teknoloji (ENG) | |
dc.title | Maximum stream temperature estimation of Degirmendere River using artificial neural network | |
dc.type | Makale | |
dc.relation.journal | JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH | |
dc.contributor.department | , , | |
dc.identifier.volume | 66 | |
dc.identifier.issue | 5 | |
dc.identifier.startpage | 363 | |
dc.identifier.endpage | 366 | |
dc.contributor.firstauthorID | 63454 | |