Show simple item record

dc.contributor.authorElgun, Elcim
dc.date.accessioned2021-03-05T12:04:49Z
dc.date.available2021-03-05T12:04:49Z
dc.date.issued2019
dc.identifier.citationElgun E., "Structure of the Eberlein compactification of locally compact Heisenberg type group ZxTxT", SEMIGROUP FORUM, cilt.99, ss.233-244, 2019
dc.identifier.issn0037-1912
dc.identifier.otherav_ab4cd5a4-0123-4639-921e-71c31880e8f0
dc.identifier.othervv_1032021
dc.identifier.urihttp://hdl.handle.net/20.500.12627/114371
dc.identifier.urihttps://doi.org/10.1007/s00233-018-9969-7
dc.description.abstractGiven a locally compact group G, the Eberlein compactification G(e) is the spectrum of the uniform closure of the Fourier-Stieltjes algebra B(G). Hence, it is the semigroup compactification related to the unitary representations of G. G(e) is a semitopological semigroup compactification and thus a quotient of the weakly almost periodic compactification of G. In this paper we aim to study the Eberlein compactification of the group ZxTxT equipped with Heisenberg type multiplication. First, we will see that transitivity properties of the action of ZxT on the central subgroup T force some aspects of the structure of (ZxTxT) to be quite simple. On the other hand, we will observe that the Eberlein compactification of the direct product group ZxT is large with a complicated structure, and can be realized as a quotient of the Eberlein compactification (ZxTxT)(e).
dc.language.isoeng
dc.subjectMatematik
dc.subjectTemel Bilimler (SCI)
dc.titleStructure of the Eberlein compactification of locally compact Heisenberg type group ZxTxT
dc.typeMakale
dc.relation.journalSEMIGROUP FORUM
dc.contributor.departmentİstanbul Üniversitesi , ,
dc.identifier.volume99
dc.identifier.issue2
dc.identifier.startpage233
dc.identifier.endpage244
dc.contributor.firstauthorID268816


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record