Basit öğe kaydını göster

dc.contributor.authorŞAKAR, CEMAL OKAN
dc.contributor.authorKursun, Olcay
dc.date.accessioned2021-03-05T10:52:02Z
dc.date.available2021-03-05T10:52:02Z
dc.date.issued2017
dc.identifier.citationŞAKAR C. O. , Kursun O., "Discriminative Feature Extraction by a Neural Implementation of Canonical Correlation Analysis", IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, cilt.28, ss.164-176, 2017
dc.identifier.issn2162-237X
dc.identifier.othervv_1032021
dc.identifier.otherav_a555308c-c60a-4f37-8e3e-a68ec5d35456
dc.identifier.urihttp://hdl.handle.net/20.500.12627/110574
dc.identifier.urihttps://doi.org/10.1109/tnnls.2015.2504724
dc.description.abstractThe canonical correlation analysis (CCA) aims at measuring linear relationships between two sets of variables (views) that can be used for feature extraction in classification problems with multiview data. However, the correlated features extracted by the CCA may not be class discriminative, since CCA does not utilize the class labels in its traditional formulation. Although there is a method called discriminative CCA (DCCA) that aims to increase the discriminative ability of CCA inspired from the linear discriminant analysis (LDA), it has been shown that the extracted features with this method are identical to those by the LDA with respect to an orthogonal transformation. Therefore, DCCA is simply equivalent to applying single-view (regular) LDA to each one of the views separately. Besides, DCCA and the other similar DCCA approaches have generalization problems due to the sample covariance matrices used in their computation, which are sensitive to outliers and noisy samples. In this paper, we propose a method, called discriminative alternating regression (D-AR), to explore correlated and also discriminative features. D-AR utilizes two (alternating) multilayer perceptrons, each with a linear hidden layer, learning to predict both the class labels and the outputs of each other. We show that the features found by D-AR on training sets significantly accomplish higher classification accuracies on test sets of facial expression recognition, object recognition, and image retrieval experimental data sets.
dc.language.isoeng
dc.subjectSinyal İşleme
dc.subjectBilgisayar Bilimleri
dc.subjectAlgoritmalar
dc.subjectBiyoenformatik
dc.subjectDonanım
dc.subjectMühendislik ve Teknoloji
dc.subjectMühendislik
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.subjectBİLGİSAYAR BİLİMİ, TEORİ VE YÖNTEM
dc.subjectBİLGİSAYAR BİLİMİ, DONANIM VE MİMARLIK
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectBilgisayar Bilimi
dc.subjectBİLGİSAYAR BİLİMİ, YAPAY ZEKA
dc.titleDiscriminative Feature Extraction by a Neural Implementation of Canonical Correlation Analysis
dc.typeMakale
dc.relation.journalIEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
dc.contributor.departmentBahçeşehir Üniversitesi , ,
dc.identifier.volume28
dc.identifier.issue1
dc.identifier.startpage164
dc.identifier.endpage176
dc.contributor.firstauthorID238536


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster