Show simple item record

dc.contributor.authorKAYABOL, KORAY
dc.contributor.authorKutluk, Sezer
dc.contributor.authorAkan, Aydin
dc.date.accessioned2021-03-05T09:44:48Z
dc.date.available2021-03-05T09:44:48Z
dc.identifier.citationKutluk S., KAYABOL K., Akan A., "Classification of Hyperspectral Images using Mixture of Probabilistic PCA Models", 24th European Signal Processing Conference (EUSIPCO), Budapest, Macaristan, 28 Ağustos - 02 Eylül 2016, ss.1568-1572
dc.identifier.othervv_1032021
dc.identifier.otherav_9f6a5708-0498-41e4-8d07-17278eed3f0e
dc.identifier.urihttp://hdl.handle.net/20.500.12627/107007
dc.identifier.urihttps://doi.org/10.1109/eusipco.2016.7760512
dc.description.abstractWe propose a supervised classification and dimensionality reduction method for hyperspectral images. The proposed method contains a mixture of probabilistic principal component analysis (PPCA) models. Using the PPCA in the mixture model inherently provides a dimensionality reduction. Defining the mixture model to be spatially varying, we are also able to include spatial information into the classification process. In this way, the proposed mixture model allows dimensionality reduction and spectral-spatial classification of hyperspectral image at the same time. The experimental results obtained on real hyperspectral data show that the proposed method yields better classification performance compared to state of the art methods.
dc.language.isoeng
dc.subjectSinyal İşleme
dc.subjectMühendislik ve Teknoloji
dc.subjectBilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMühendislik
dc.subjectMÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK
dc.titleClassification of Hyperspectral Images using Mixture of Probabilistic PCA Models
dc.typeBildiri
dc.contributor.departmentGebze Teknik Üniversitesi , ,
dc.contributor.firstauthorID148407


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record