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Abstract. The key contribution of this paper is to study the stability analysis
of neutral-type Cohen-Grossberg neural networks possessing multiple time de-

lays in the states of the neurons and multiple neutral delays in time derivative

of states of the neurons. By making the use of a proper Lyapunov functional,
we propose a novel sufficient time-independent stability criterion for this model

of neutral-type neural networks. The proposed stability criterion in this paper
can be absolutely expressed in terms of the parameters of the neural network

model considered as this newly proposed criterion only relies on the relation-

ships established among the network parameters. A numerical example is also
given to indicate the advantages of the obtained stability criterion over the

previously published stability results for the same class of Cohen-Grossberg

neural networks. Since obtaining stability conditions for neutral-type Cohen-
Grossberg neural networks with multiple delays is a difficult task to achieve,

there are only few papers in the literature dealing with this problem. There-

fore, the results given in the current paper makes an important contribution
to the stability problem for this class of neutral-type neural networks.

1. Introduction. In recent decades, various classes of neural networks have been
employed to solve many different engineering problems arising in the real world ap-
plications such as moving image processing, control and optimization applications,
parallelly computing systems, associative memory design, (The readers can refer to
the references [1]-[7] for real world application of neural systems). In the design of
neural networks for solving practical engineering problems, it is crucial to address
the stability and equilibrium characterison of these designed neural systems. In
particular, in the electronic implementation of neural systems using VLSI technol-
ogy, due to the finite switching speed of amplifiers and the communication times
among the neurons bring about some unavoidable time delays, which can change
the aimed dynamical properties of neural systems. Beacuse of such dynamical prob-
lems caused by time delays, it is a critical task to investigate the stability criteria
for neural networks whose dynamical model involve delay parameters. In the recent
literature, many various stability results have been proposed, which establish the
global asymptotic stability of different classes of neural systems in the presence of
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time delays [8]-[25]. On the other hand, it is known that including the delay pa-
rameters in the time derivative of states of the neurons enables us to determine a
complete characterization of dynamical properties of delayed neural systems. Such
a modification in neural networks leads us to establish the delayed neutral-type
neural network models. Such neutral-type systems have useful applications in pop-
ulation ecology, distributed networks with loss less transmission lines, propagation
and diffusion models [26]-[28].

This paper will consider the neutral-type Cohen-Grossberg neural networks pos-
sessing multiple time delays in the states of the neurons and multiple neutral delays
in time derivatives of the states of the neurons described by the following sets of
differential equations :

ẋi(t) =di(xi(t))

(
− ci(xi(t)) +

n∑
j=1

aijfj(xj(t)) +

n∑
j=1

bijfj(xj(t− τij)) + ui

)

+

n∑
j=1

eij ẋj(t− ζij), i = 1, · · ·, n.
(1)

in which xi(t) denotes the state of the ith neuron, ci(xi) are some behaved functions
and di(xi(t)) represent the amplification functions. The constant parameters aij
and bij represent the values of the interconnections among the neurons. τij (1 ≤
i, j ≤ n) represent the time delay parameters and ζij (1 ≤ i, j ≤ n) represent the
neutral delay parameters. The parameters eij denote the coefficients of the time
derivative of the states involving delays. The nonlinear activation functions are
denoted by fj(·) and ui are constant inputs. In (1), if assume that τ = max{τij},
ζ = max{ζij}, 1 ≤ i, j ≤ n, and ξ = max{τ, ζ}. In this case, neural system (1) has
the initial conditions given by : xi(t) = ϕi(t) and ẋi(t) = ϑi(t) ∈ C([−ξ, 0], R) with
C([−ξ, 0], R) being the set of all continuous functions from [−ξ, 0] to R.

Before proceeding with the stability analysis of neutral system (1), we need to
give the properties of di(xi(t)), ci(xi(t)) and fi(xi(t)). These functions are assumed
to possess following main conditions :
A1 : For the functions di(xi(t)), there exist positive real numbers µi and ρi such

that the following conditions hold :

0 < µi≤ di(xi(t)) ≤ ρi, i = 1, 2, ..., n, ∀xi(t) ∈ R.

A2 : For the functions ci(xi(t)), there exist positive real numbers γi and ψi such
that the following conditions hold :

0 < γi≤
ci(xi(t))− ci(yi(t))

xi(t)− yi(t)
=
|ci(xi(t))− ci(yi(t))|
|xi(t)− yi(t)|

≤ψi,

∀xi(t), yi(t) ∈ R, xi(t) 6=yi(t), i = 1, 2, ..., n.

A3 : For the functions fi(xi(t)) there exist positive real numbers `i such that the
following conditions hold :

|fi(xi(t))− fi(yi(t))|≤`i|xi(t)− yi(t)|, ∀xi(t), yi(t) ∈ R, xi(t) 6=yi(t), i = 1, 2, ..., n.

Since, neutral-type neural system (1) cannot be stated in the matrix-vector form
due to involving multiple delays, studying the stabilty of system (1) has been a very
difficult problem to overcome. Therefore, in the past literature, many researchers
have focused on the stability analysis of a special model of system (1), which is
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described by the following sets of equations :

ẋi(t) =di(xi(t))

(
− ci(xi(t)) +

n∑
j=1

aijfj(xj(t)) +

n∑
j=1

bijfj(xj(t− τj)) + ui

)

+

n∑
j=1

eij ẋj(t− ζj), i = 1, · · ·, n.
(2)

Note that neutral system (2) is a specialized model of neutral system (1) with
the assumptions that τij = τj and ζij = ζj , ∀i, j. Note that system (2) can be
mathematically expressed in the vector-matrix form. This makes it possible to
develope and employ some suitable Lyapunov functionals to study the stability
problem for system (2). There exist many results ensuring the stability of system (2)
in the past literature [29]-[42] where various forms of neutral system (2) have been
considered. In these papers, the proposed results have been derived by employing
various and modified Lyapunov functionals and these stability results have been
expressed in the various forms of linear-matrix inequalities (LMIs). On the other
hand, some recent papers have presented some new algebraic stability criteria which
can be considered as alternative results to those that are in the LMI forms [43]-[47].
To the best of the knowledge of the author of this paper, only a recent paper has
presented some results on the stability of neutral system (1) [48]. In our current
paper, by developing a novel Lyapunov functional, we will study neutral system (1)
and derive some new and alternative global asymptotic stability conditions for this
system.

2. Stability analysis. This section will deal with determining a new criterion
that guarantees the global stability of the equilibrium point of delayed Cohen-
Groosberg neural system of neutral-type given by (1). In order to achieve this
task, the equilibrium points x∗ = (x∗1, x

∗
2, ..., x

∗
n)T of delayed neutral system (1)

is to be shifted to the origin. This is usually done by using the transformation
zi(t) = xi(t)− x∗i , which can deduce the neutral system of the form

żi(t) =αi(zi(t))

(
− βi(zi(t)) +

n∑
j=1

aijgj(zj(t)) +

n∑
j=1

bijgj(zj(t− τij))
)

+

n∑
j=1

eij żj(t− ζij), i = 1, · · ·, n.
(3)

where αi(zi(t)) = di(zi(t) + x∗i ), βi(zi(t)) = ci(zi(t) + x∗i )− ci(x∗i ), and gi(zi(t)) =
fi(zi(t) + x∗i ) − fi(x∗i ),∀i It should be pointed out that neural-type neural system
defined (3) possesses the properties of the assumptions A1, A2 and A3. We can
restate these assumptions for system (3) as follows :

Ã1 : µi≤ αi(zi(t)) ≤ ρi, ∀i,
Ã2 : γiz

2
i (t)≤zi(t)βi(zi(t))≤ψiz2i (t), ∀i,

Ã3 : |gi(zi(t))|≤`i|zi(t)|, ∀i.
We are now in the position to derive the main condition for the global asymptotic

stability of system (1) which is given in the following theorem :

Theorem 2.1. Let the neutral-type neural system described by (3) satisfy the as-

sumptions Ã1− Ã3. Then, the origin of neural system (3) is globally asymptotically
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stable if there exist positive constants δ and κ such that the following conditions
hold:

νi = γ2i − (2 + κ)n

n∑
j=1

a2ji`
2
i − (2 + δ)n

n∑
j=1

b2ji`
2
i > 0, i = 1, · · ·, n

υij =
1

n

1

ρ2j
− (1 +

1

κ
+

1

δ
)n

1

µ2
i

e2ij > 0, i, j = 1, · · ·, n.

Proof : This theorem will be proved by utilizing the following positive definite
Lyapunov functional :

V (t) = 2

n∑
i=1

∫ zi(t)

0

βi(s)

αi(s)
ds+

1

n

n∑
i=1

n∑
j=1

∫ t

t−ζij

1

α2
j (zj(s))

ż2j (s)ds

+n(2 + δ)

n∑
i=1

n∑
j=1

∫ t

t−τij
b2ijg

2
j (zj(s))ds+ ε

n∑
i=1

n∑
j=1

∫ t

t−τij
z2j (s)ds

where ε is a positive constant whose numerical value will be determined later. The
time derivative of V (t) along the trajectories of the neutral-type neural system
described by (3) is derived to be in the following form :

V̇ (t) =

n∑
i=1

2
βi(zi(t))

αi(zi(t))
żi(t) +

1

n

n∑
i=1

n∑
j=1

1

α2
j (zj(t))

ż2j (t)

− 1

n

n∑
i=1

n∑
j=1

1

α2
j (zj(t− ζij))

ż2j (t− ζij)

+ n(2 + δ)

n∑
i=1

n∑
j=1

b2ijg
2
j (zj(t))

− n(2 + δ)

n∑
i=1

n∑
j=1

b2ijg
2
j (zj(t− τij))

+ ε

n∑
i=1

n∑
j=1

z2j (t)− ε
n∑

i=1

n∑
j=1

z2j (t− τij)

(4)

We can write the following equality :

1

n

n∑
i=1

n∑
j=1

1

α2
j (zj(t))

ż2j (t) =
1

n

n∑
i=1

n∑
j=1

1

α2
i (zi(t))

ż2i (t) =

n∑
i=1

1

α2
i (zi(t))

ż2i (t) (5)

Using (5) in (4) results in

V̇ (t) =

n∑
i=1

2
βi(zi(t))

αi(zi(t))
żi(t) +

n∑
i=1

1

α2
i (zi(t))

ż2i (t)

− 1

n

n∑
i=1

n∑
j=1

1

α2
j (zj(t− ζij))

ż2j (t− ζij)

+ n(2 + δ)

n∑
i=1

n∑
j=1

b2ijg
2
j (zj(t))
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− n(2 + δ)

n∑
i=1

n∑
j=1

b2ijg
2
j (zj(t− τij))

+ ε

n∑
i=1

n∑
j=1

z2j (t)− ε
n∑

i=1

n∑
j=1

z2j (t− τij)

=

n∑
i=1

(
2βi(zi(t)) +

żi(t)

αi(zi(t))

)
żi(t)

αi(zi(t))

− 1

n

n∑
i=1

n∑
j=1

1

α2
j (zj(t− ζij))

ż2j (t− ζij)

+ n(2 + δ)

n∑
i=1

n∑
j=1

b2ijg
2
j (zj(t))

− n(2 + δ)

n∑
i=1

n∑
j=1

b2ijg
2
j (zj(t− τij))

+ ε

n∑
i=1

n∑
j=1

z2j (t)− ε
n∑

i=1

n∑
j=1

z2j (t− τij)

(6)

From (3), we can write the equality :

żi(t)

αi(zi(t))
=− βi(zi(t)) +

n∑
j=1

aijgj(zj(t)) +

n∑
j=1

bijgj(zj(t− τij))

+
1

αi(zi(t))

n∑
j=1

eij żj(t− ζij), i = 1, · · ·, n.
(7)

Adding the term 2βi(zi(t)) to the both sides of (7) leads to

2βi(zi(t)) +
żi(t)

αi(zi(t))
=βi(zi(t)) +

n∑
j=1

aijgj(zj(t)) +

n∑
j=1

bijgj(zj(t− τij))

+
1

αi(zi(t))

n∑
j=1

eij żj(t− ζij), i = 1, · · ·, n.
(8)

Multiplying (7) by (8) results in

(2βi(zi(t)) +
żi(t)

αi(zi(t))
)

żi(t)

αi(zi(t))

=

(
− βi(zi(t)) +

n∑
j=1

aijgj(zj(t)) +

n∑
j=1

bijgj(zj(t− τij))

+
1

αi(zi(t))

n∑
j=1

eij żj(t− ζij)
)
×
(
βi(zi(t)) +

n∑
j=1

aijgj(zj(t))

+

n∑
j=1

bijgj(zj(t− τij)) +
1

αi(zi(t))

n∑
j=1

eij żj(t− ζij)
)
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=− β2
i (zi(t)) +

( n∑
j=1

aijgj(zj(t))

)2

+

( n∑
j=1

bijgj(zj(t− τij))
)2

+

(
1

αi(zi(t))

n∑
j=1

eij żj(t− ζij)
)2

+ 2

( n∑
j=1

aijgj(zj(t))

)( n∑
j=1

bijgj(zj(t− τij))
)

+ 2

( n∑
j=1

aijgj(zj(t))

)(
1

αi(zi(t))

n∑
j=1

eij żj(t− ζij)
)

+ 2

( n∑
j=1

bijgj(zj(t− τij))
)(

1

αi(zi(t))

n∑
j=1

eij żj(t− ζij)
)

(9)

We now note the following inequalities :

2

( n∑
j=1

aijgj(zj(t))

)( n∑
j=1

bijgj(zj(t− τij))
)

≤
( n∑
j=1

aijgj(zj(t))

)2

+

( n∑
j=1

bijgj(zj(t− τij))
)2

(10)

2

( n∑
j=1

aijgj(zj(t))

)(
1

αi(zi(t))

n∑
j=1

eij żj(t− ζij)
)

≤ κ
( n∑
j=1

aijgj(zj(t))

)2

+
1

κ

(
1

αi(zi(t))

n∑
j=1

eij żj(t− ζij)
)2 (11)

and

2

( n∑
j=1

bijgj(zj(t− τij))
)(

1

αi(zi(t))

n∑
j=1

eij żj(t− ζij)
)

≤ δ
( n∑
j=1

bijgj(zj(t− τij))
)2

+
1

δ

(
1

αi(zi(t))

n∑
j=1

eij żj(t− ζij)
)2 (12)

where κ and δ are some positive constants. Using (10)-(12) in (9) yields :

(2βi(zi(t)) +
żi(t)

αi(zi(t))
)

żi(t)

αi(zi(t))

≤ −β2
i (zi(t)) + 2

( n∑
j=1

aijgj(zj(t))

)2

+ 2

( n∑
j=1

bijgj(zj(t− τij))
)2

+ κ

( n∑
j=1

aijgj(zj(t))

)2

+ δ

( n∑
j=1

bijgj(zj(t− τij))
)2

+
1

κ

(
1

αi(zi(t))

n∑
j=1

eij żj(t− ζij)
)2

+
1

δ

(
1

αi(zi(t))

n∑
j=1

eij żj(t− ζij)
)2

+

(
1

αi(zi(t))

n∑
j=1

eij żj(t− ζij)
)2

(13)
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= −β2
i (zi(t)) + (2 + κ)

( n∑
j=1

aijgj(zj(t))

)2

+ (2 + δ)

( n∑
j=1

bijgj(zj(t− τij))
)2

+ (1 +
1

κ
+

1

δ
)

(
1

αi(zi(t))

n∑
j=1

eij żj(t− ζij)
)2

Note the inequalities :( n∑
j=1

aijgj(zj(t))

)2

≤ n
n∑

j=1

a2ijg
2
j (zj(t)) (14)

( n∑
j=1

bijgj(zj(t− τij))
)2

≤ n
n∑

j=1

b2ijg
2
j (zj(t− τij)) (15)

(
1

αi(zi(t))

n∑
j=1

eij żj(t− ζij)
)2

≤ n

n∑
j=1

1

α2
i (zi(t))

e2ij ż
2
j (t− ζij) (16)

Using (14)-(16) in (13) leads to :

(2βi(zi(t)) +
żi(t)

αi(zi(t))
)

żi(t)

αi(zi(t))
=− β2

i (zi(t)) + (2 + κ)n

n∑
j=1

a2ijg
2
j (zj(t))

+ (2 + δ)n

n∑
j=1

b2ijg
2
j (zj(t− τij))

+ (1 +
1

κ
+

1

δ
)

n∑
j=1

n

α2
i (zi(t))

e2ij ż
2
j (t− ζij)

(17)

Thus, from (17), we can write

n∑
i=1

(2βi(zi(t)) +
żi(t)

αi(zi(t))
)

żi(t)

αi(zi(t))

≤ −
n∑

i=1

β2
i (zi(t)) + (2 + κ)n

n∑
i=1

n∑
j=1

a2ijg
2
j (zj(t))

+ (2 + δ)n

n∑
i=1

n∑
j=1

b2ijg
2
j (zj(t− τij))

+ (1 +
1

κ
+

1

δ
)n

n∑
i=1

n∑
j=1

1

α2
i (zi(t))

e2ij ż
2
j (t− ζij)

(18)

Using (18) in (6) will give the following :

V̇ (t) ≤ −
n∑

i=1

β2
i (zi(t)) + (2 + κ)n

n∑
i=1

n∑
j=1

a2ijg
2
j (zj(t))

+ (2 + δ)n

n∑
i=1

n∑
j=1

b2ijg
2
j (zj(t))
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+ (1 +
1

κ
+

1

δ
)n

n∑
i=1

n∑
j=1

1

α2
i (zi(t))

e2ij ż
2
j (t− ζij)

− 1

n

n∑
i=1

n∑
j=1

1

α2
j (zj(t− ζij))

ż2j (t− ζij)

+ ε

n∑
i=1

n∑
j=1

z2j (t)− ε
n∑

i=1

n∑
j=1

z2j (t− τij)

= −
n∑

i=1

β2
i (zi(t)) + (2 + κ)n

n∑
i=1

n∑
j=1

a2jig
2
i (zi(t))

+ (2 + δ)n

n∑
i=1

n∑
j=1

b2jig
2
i (zi(t))

+ (1 +
1

κ
+

1

δ
)n

n∑
i=1

n∑
j=1

1

α2
i (zi(t))

e2ij ż
2
j (t− ζij)

− 1

n

n∑
i=1

n∑
j=1

1

α2
j (zj(t− ζij))

ż2j (t− ζij)

+ ε

n∑
i=1

n∑
j=1

z2j (t)− ε
n∑

i=1

n∑
j=1

z2j (t− τij)

(19)

Under the assumptions Ã1 − Ã3, we have α2
j (zj(t − τij)) ≤ ρ2j , α

2
i (zi(t)) ≥ µ2

i ,

β2
i (zi(t)) ≥ γ2i z

2
i (t) and g2i (zi(t))≤`2i z2i (t), i, j = 1, 2, · · ·, n. Thus, (19) can be

written as follows :

V̇ (t) ≤ −
n∑
i=1

γ2i z
2
i (t) + (2 + κ)n

n∑
i=1

n∑
j=1

a2ij`
2
jz

2
j (t)

+ (2 + δ)n

n∑
i=1

n∑
j=1

b2ij`
2
jz

2
j (t)

+ (1 +
1

κ
+

1

δ
)n

n∑
i=1

n∑
j=1

1

µ2
i

e2ij ż
2
j (t− ζij)

− 1

n

n∑
i=1

n∑
j=1

1

ρ2j
ż2j (t− ζij) + ε

n∑
i=1

n∑
j=1

z2j (t)− ε
n∑

i=1

n∑
j=1

z2j (t− τij)

= −
n∑
i=1

γ2i z
2
i (t) + (2 + κ)n

n∑
i=1

n∑
j=1

a2ji`
2
i z

2
i (t)

+ (2 + δ)n

n∑
i=1

n∑
j=1

b2ji`
2
i z

2
i (t)

+ (1 +
1

κ
+

1

δ
)n

n∑
i=1

n∑
j=1

1

µ2
i

e2ij ż
2
j (t− ζij)−

1

n

n∑
i=1

n∑
j=1

1

ρ2j
ż2j (t− ζij)

+ ε

n∑
i=1

n∑
j=1

z2j (t)− ε
n∑

i=1

n∑
j=1

z2j (t− τij)

(20)
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= −
n∑
i=1

(γ2i − (2 + κ)n

n∑
j=1

a2ji`
2
i − (2 + δ)n

n∑
j=1

b2ji`
2
i )z

2
i (t)

−
n∑
i=1

n∑
j=1

(
1

n

1

ρ2j
− (1 +

1

κ
+

1

δ
)n

1

µ2
i

e2ij)ż
2
j (t− ζij)

+ ε

n∑
i=1

n∑
j=1

z2j (t)− ε
n∑

i=1

n∑
j=1

z2j (t− τij)

= −
n∑
i=1

νiz
2
i (t)−

n∑
i=1

n∑
j=1

υij ż
2
j (t− ζij)

+ ε

n∑
i=1

n∑
j=1

z2j (t)− ε
n∑

i=1

n∑
j=1

z2j (t− τij)

Since υij > 0, ∀i, j and ε > 0, (20) takes the form :

V̇ (t) ≤ −
n∑
i=1

νiz
2
i (t) + ε

n∑
i=1

n∑
j=1

z2j (t)

= −
n∑
i=1

νiz
2
i (t) + nε

n∑
i=1

z2i (t)

≤ −νm||z(t)||22 + nε||z(t)||22
= −(νm − nε)||z(t)||22

(21)

where νm = min{νi} and z(t) = (z1(t), z2(t), · · ·, zn(t))T . In (21), the choice ε < νm
n

will guarantee that V̇ (t) < 0 for all z(t) 6= 0. Now, consider the case where z(t) = 0.
( Note that zi(t) = 0 implies that gi(zi(t)) = 0). In this case, from (20), we obtain

V̇ (t) ≤ −
n∑
i=1

n∑
j=1

υij ż
2
j (t− ζij)− ε

n∑
i=1

n∑
j=1

z2j (t− τij)

≤ −ε
n∑

i=1

n∑
j=1

z2j (t− τij)
(22)

It follows from (22) that if zj(t − τij) 6= 0 for any randomly selected pairs of i

and j, then, V̇ (t) will be strictly negative definite. Now, consider the case where
z(t) = 0 and zj(t− τij) = 0, i, j = 1, 2, ..., n. (Note that zj(t− τij) = 0 implies that
gj(zj(t− τij)) = 0). In this case, from (20), we obtain

V̇ (t) ≤ −
n∑
i=1

n∑
j=1

υij ż
2
j (t− ζij) (23)

Since υij > 0, ∀i, j, it follows from (23) that if żj(t − ζij) 6= 0 for any randomly

selected pairs of i and j, then, V̇ (t) will be strictly negative definite. Now, consider
the case where zi(t) = 0, gi(zi(t)) = 0, zj(t − τij) = 0, gj(zj(t − τij)) = 0 and
żj(t− ζij) = 0, i, j = 1, 2, · · ·, n. In this case, we have

V̇ (t) =

n∑
i=1

1

α2
i (zi(t))

ż2i (t) (24)
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Note that if zi(t) = 0, gi(zi(t)) = 0, zj(t − τij) = 0, gj(zj(t − τij)) = 0 and
żj(t − ζij) = 0, i, j = 1, 2, · · ·, n, then, from (3), we have żi(t) = 0, ∀i. Therefore,

in this case, V̇ (t) = 0. Thus, one can directly see that the condition V̇ (t) = 0
holds iff when zi(t) = 0, gi(zi(t)) = 0, zj(t − τij) = 0, gj(zj(t − τij)) = 0 and

żj(t− ζij) = 0, i, j = 1, 2, · · ·, n, and V̇ (t) is negative definite for all the other cases.
Based on the above analysis of the time derivative of the Lyapunov functional used
in the stability analysis, it can be stated that the origin of neutral-type neural model
(3) is asymptotically stable. It is also worth noting that the employed Lyapunov
functional is radially unbounded, that is to say, V (z(t))→∞ as ||z(t)|| → ∞. This
property of the Lyapunov functional ensures that the origin of neutral-type neural
model (3) is globally asymptotically stable. Thus, one can directly conclude that
the equilibrium point of neutral-type neural model (1) is globally asymptotically
stable.

3. Comparisons and an example. The following theorem has been given in [48]:

Theorem 3.1. Let the neutral-type neural system described by (3) satisfy the as-

sumptions Ã1− Ã3. Then, the origin of neural system (3) is globally asymptotically
stable if the following conditions hold :

εi = 2µiγi −
n∑

j=1

(ρi`j |aij |+ ρj`i|aji|)−
n∑

j=1

(ρi`j |bij |+ ρj`i|bji|)

−
n∑
j=1

(ρiψi|eij |+ ρjψj |eji|)−
n∑

j=1

n∑
k=1

(ρi`i|aki||ekj |+ ρk`i|bki||ekj |)

−
n∑

j=1

n∑
k=1

(ρj`k|ajk||eji|+ ρj`k|bjk||eji|) > 0, ∀i

and

εi = 1−
n∑
j=1

|eji| > 0, ∀i.

Then, the origin of neutral-type system (1) is globally asymptotically stable.
We now study the following example to exploit the effectiveness and advantages

of the criterion proposed in Theorem 2.1.

Example. Consider the neutral-type neural network model given by (1) with the
following system parameters :

aij =
1

16
, bij =

1

16
, and eij = e, i, j = 1, 2, 3, 4.

ρ1 = ρ2 = ρ3 = ρ4 = 1, `1 = `2 = `3 = `4 = 1

µ1 = µ2 = µ3 = µ4 = 1, γ1 = γ2 = γ3 = γ4 = 1, 1,

ψ1 = ψ2 = ψ3 = ψ4 = ψ

Let us first apply the results of Theorem 3.1 to this example to derive the stability
conditions. The conditions of Theorem 3.1 are obtained as follows:

ε1 = ε2 = ε3 = ε4 = 2, 2−
4∑

j=1

(|aij |+ |aji|)−
4∑

j=1

(|bij |+ |bji|)
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−
4∑

j=1

ψ(|eij |+ |eji|)

−
4∑

j=1

4∑
k=1

(|aki||ekj |+ |bki||ekj |)

−
4∑

j=1

4∑
k=1

(|ajk||eji|+ |bjk||eji|)

= 1, 2− 8ψe− 4e > 0

from which the stability condition of Theorem 3.1 is derived as follows :

e <
1, 2

8ψ + 4

According to assumption Ã2, for this example, the minimum value of ψ is
ψ = 1, 1. For this value of ψ, e must satisfy the conditon e < 0, 09375.

We now apply the results of Theorem 2.1 to this example to derive the stability
conditions. For κ = 6 and δ = 6, the conditions of Theorem 2.1 are obtained as
follows :

νi = 1, 21− 8n

n∑
j=1

a2ji − 8n

n∑
j=1

b2ji

= 0, 21 > 0, i = 1, 2, 3, 4

υij =
1

n
− 4

3
ne2 > 0, i, j = 1, 2, 3, 4.

from which the stability condition of Theorem 2.1 is derived as follows :

e <

√
3

8

implying that e < 0, 2165 is a sufficient condition for the stability of the system given
in this example. When we compare stability conditions of this example imposed
by Theorems 2.1 and 3.1, we can see that Theorem 2.1 imposes a less restrictive
stability condition than Theorem 3.1 imposes.

4. Conclusions. This paper has made a useful contribution to the problem of the
stability analysis of neutral-type Cohen-Grossberg neural networks possessing mul-
tiple time delays in the states of the neurons and multiple neutral delays in time
derivative of states of the neurons. By making the use of a suitable Lyapunov
functional, this paper has proposed a new sufficient time-independent stability con-
dition for delayed neutral-type Cohen-Grossberg neural networks. The obtained
stability criterion can be completely stated in terms of the parameters of the neural
network model considered as the proposed criterion only relies on the relationships
established among the network parameters. A instructive numerical example has
also been given to show the advantages of the derived stability criterion over the
previously published stability results for the same class of Cohen-Grossberg neural
networks. As pointed out before, obtaining stability conditions for neutral-type
Cohen-Grossberg neural networks with multiple delays is a dificult task to achieve.
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Therefore, the stability condition given in the current paper makes an important
contribution to the stability problem for this class of neutral-type neural networks.
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