Activation and inactivation of homomeric KvLQT1 potassium channels
Özet
The voltage-gated potassium channel protein KvLQT1 (Wang et al., 1996, Nature Genet. 12:17-23) is believed to underlie the delayed rectifier potassium current of cardiac muscle together with the small membrane protein minK (also named IsK) as an essential auxiliary subunit (Barhanin et at., 1996. Nature. 384:78-80; Sanguinetti et al., 1996. Nature. 384,80-83). Using the Xenopus oocyte expression system, we analyzed in detail the gating characteristics of homomeric KvLQT1 channels and of heteromeric KvLQT1/minK channels using two-electrode voltage-clamp recordings. Activation of homomeric KvLQT1 at positive voltages is accompanied by an inactivation process that is revealed by a transient increase in conductance after membrane repolarization to negative values. We studied the recovery from inactivation and the deactivation of the channels during tail repolarizations at -120 mV after conditioning pulses of variable amplitude and duration. Most measurements were made in high extracellular potassium to increase the size of inward tail currents. However, experiments in normal low-potassium solutions st-cowed that, in contrast to classical C-type inactivation, the inactivation of KvLQT1 is independent of extracellular potassium. At +40 mV inactivation develops with a delay of 100 ms. At the same potential, the activation estimated from the amplitude of the late exponential decay of the tail currents follows a less sigmoidal time course, with a late time constant of 300 ms. Inactivation of KvLQT1 is not complete, even at the most positive voltages. The delayed, voltage-dependent onset and the incompleteness of inactivation suggest a sequential gating scheme containing at least two open states and ending with an inactivating step that is voltage independent. In coexpression experiments of KvLQT1 with minK, inactivation seems to be largely absent, although biphasic tails are also observed that could be related to similar phenomena.
Koleksiyonlar
- Makale [92796]