Influence of back gate voltage on electrical transport in Zn1-(y+x)(Al-x,Eu-y)O thin films
Tarih
2018Yazar
Algun, Gökhan
Can, Musa Mutlu
Akcay, Namik
Kaneko, Satoru
Üst veri
Tüm öğe kaydını gösterÖzet
We investigated the back gate voltage (VBG) dependent electrical conductivity of Zn1-(y+x)(Al-x,Eu-y)O (x = 0.00, 0.01; y = 0.00, 0.01, 0.02 and 0.05) thin films. Zn1-(y+x)(Al-x,Eu-y)O (x = 0.00, 0.01; y = 0.00, 0.01, 0.02 and 0.05) thin films were synthesized with combining sol-gel and spin coating techniques. Electrical conductivity measurements was monitored by longitudinal conductivity curves of Eu doped (Zn, Al)O thin films. The measurements show a sharp decrease or increase in conductivity of Eu doped (Zn, Al)O thin films by an applied +/- V-BG, which was not observed for Al doped ZnO thin films. The Eu amount in (Zn, Al)O lattice was the key parameter to manage the change in conductivity by +/- V-BG. The highest increase in conductivity by applied +/- V-BG was observed for 1 mol% Eu-doped Zn1-(y+0.01)(Al-0.01,Eu-y)O films, which also performed the highest longitudinal conductivity without a V-BG. By applied V-BG = 100 V, the change ratio in conductivity reached up to 436% for 1 mol% Eu doped (Zn, Al)O thin films. The response to VBG were drastically decreased by increase in Eu amounts in the lattice, and furthermore no change in conductivity was observed for 5 mol% Eu doped (Zn, Al) O thin films.
Koleksiyonlar
- Makale [92796]