• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Bildiri
  • Öğe Göster
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Bildiri
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Performance of Simultaneous Perturbation Stochastic Approximation for Feature Selection

Yazar
Algin, Ramazan
AĞAOĞLU, MUSTAFA
ALKAYA, ALİ FUAT
Üst veri
Tüm öğe kaydını göster
Özet
Feature Selection (FS) is an important process in the field of machine learning where complex and large-size datasets are available. By extracting unnecessary properties from the datasets, FS reduces the size of datasets and evaluation time of algorithms and also improves the performance of classification algorithms. The main purpose of the FS is achieving a minimal feature subset from the initial features of the given problem dataset where the minimal feature subset should show an acceptable performance in representing the original dataset. In this study, to generate subsets we used simultaneous perturbation stochastic approximation (SPSA), migrating birds optimization and simulated annealing algorithms. Subsets generated by the algorithms are evaluated by using correlation-based FS and performance of the algorithms is measured by using decision tree (C4.5) as a classifier. To our knowledge, SPSA algorithm is applied to the FS problem as a filter approach for the first time. We present the computational experiments conducted on the 15 datasets taken from UCI machine learning repository. Our results show that SPSA algorithm outperforms other algorithms in terms of accuracy values. Another point is that, all algorithms reduce the number of features by more than 50%.
Bağlantı
http://hdl.handle.net/20.500.12627/186097
https://doi.org/10.1007/978-3-031-09176-6_40
Koleksiyonlar
  • Bildiri [64839]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere Göre

Hesabım

GirişKayıt

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV