• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • Öğe Göster
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Clinical predictors of antipsychotic treatment resistance: Development and internal validation of a prognostic prediction model by the STRATA-G consortium

Yazar
Conus, Philippe
Alameda, Luis
Andreassen, Ole A.
Barnes, Thomas R.E.
Berardi, Domenico
Camporesi, Sara
Cleusix, Martine
Crespo-Facorro, Benedicto
Smart, Sophie E.
Lastrina, Ornella
Melle, Ingrid
Morgan, Craig
O'Neill, Francis A.
Pignon, Baptiste
Restellini, Romeo
Richard, Jean-Romain
Simonsen, Carmen
Španiel, Filip
Szöke, Andrei
Tarricone, Ilaria
Tortelli, Andrea
Üçok, Alp
Vázquez-Bourgon, Javier
Murray, Robin M.
Walters, James T.R.
Stahl, Daniel
MacCabe, James H.
Kassoumeri, Laura
Joyce, Eileen
Jenni, Raoul
Homman, Lina
Guidi, Lorenzo
Ferchiou, Aziz
Eap, Chin B.
Doody, Gillian
Do, Kim
Di Forti, Marta
Demjaha, Arsime
D'Andrea, Giuseppe
Agbedjro, Deborah
Pardiñas, Antonio F.
Ajnakina, Olesya
Üst veri
Tüm öğe kaydını göster
Özet
© 2022 The AuthorsIntroduction: Our aim was to, firstly, identify characteristics at first-episode of psychosis that are associated with later antipsychotic treatment resistance (TR) and, secondly, to develop a parsimonious prediction model for TR. Methods: We combined data from ten prospective, first-episode psychosis cohorts from across Europe and categorised patients as TR or non-treatment resistant (NTR) after a mean follow up of 4.18 years (s.d. = 3.20) for secondary data analysis. We identified a list of potential predictors from clinical and demographic data recorded at first-episode. These potential predictors were entered in two models: a multivariable logistic regression to identify which were independently associated with TR and a penalised logistic regression, which performed variable selection, to produce a parsimonious prediction model. This model was internally validated using a 5-fold, 50-repeat cross-validation optimism-correction. Results: Our sample consisted of N = 2216 participants of which 385 (17 %) developed TR. Younger age of psychosis onset and fewer years in education were independently associated with increased odds of developing TR. The prediction model selected 7 out of 17 variables that, when combined, could quantify the risk of being TR better than chance. These included age of onset, years in education, gender, BMI, relationship status, alcohol use, and positive symptoms. The optimism-corrected area under the curve was 0.59 (accuracy = 64 %, sensitivity = 48 %, and specificity = 76 %). Implications: Our findings show that treatment resistance can be predicted, at first-episode of psychosis. Pending a model update and external validation, we demonstrate the potential value of prediction models for TR.
Bağlantı
http://hdl.handle.net/20.500.12627/186027
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85139986927&origin=inward
https://doi.org/10.1016/j.schres.2022.09.009
Koleksiyonlar
  • Makale [92796]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere Göre

Hesabım

GirişKayıt

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV