• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • Öğe Göster
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Emergency department network under disaster conditions: The case of possible major Istanbul earthquake

Tarih
2020
Yazar
GÜNERİ, Ali Fuat
Gul, Muhammet
Gunal, Murat M.
Üst veri
Tüm öğe kaydını göster
Özet
Emergency departments (EDs) provide health care services to people in need of urgent care. Their role is remarkable when extraordinary events that affect the public, such as earthquakes, occur. In this paper, we present a hybrid framework to evaluate earthquake preparedness of EDs in cities. Our hybrid framework uses artificial neural networks (ANNs) to estimate number of casualties and discrete event simulation (DES) to analyse the effect of surge in patient demand in EDs, after an earthquake happens. At the core of our framework, Earthquake Time Emergency Department Network Simulation Model (ET-EDNETSIM) resides which can simulate patient movements in a network of multiple and coordinated EDs. With the design of simulation experiments, different resource levels and sharing rules between EDs can be evaluated. We demonstrated our framework in a network of five EDs located in a region of which is estimated to have the highest injury rate after an earthquake in Istanbul, Turkey. Results of our study contributed to the planning for expected earthquake in Istanbul. Simulating a network of EDs extends the individual ED studies in the literature and furthermore, our hybrid framework can help increase earthquake preparedness in cities around the world. On the methodological side, the use of ANN, which is a member of machine learning (ML) algorithms family, in our hybrid framework also shows the close links between ML and DES.
Bağlantı
http://hdl.handle.net/20.500.12627/184964
https://doi.org/10.1080/01605682.2019.1582588
Koleksiyonlar
  • Makale [92796]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere Göre

Hesabım

GirişKayıt

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV