• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • Öğe Göster
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting the changes in the WTI crude oil price dynamics using machine learning models

Yazar
Guliyev, Hasraddin
Mustafayev, Eldayag
Üst veri
Tüm öğe kaydını göster
Özet
This study aims to use a monthly dataset from 1991 to 2021 to predict West Texas Intermediate (WTI) oil price dynamics using U.S. macroeconomic and financial factors, as well as a global crisis and crashes. We used advanced machine learning models such as Logistic Regression, Decision Tree, Random Forest, AdaBoost, and XgBoost in this study. According to the results, the XgBoost and Random Forest models outperform traditional models. We also used DeLong statistical test procedures to accurately compare machine learning models' per-formance. In addition, the study used SHAP -SHapley Additive exPlanations values to support model evaluation and interpretability. This new outline highlights the critical features of the WTI crude oil price prediction and provides appropriate model explanations by utilizing the practical SHAP values. The empirical findings showed that machine learning models could successfully and accurately predict the trend of WTI crude oil price changes. Our findings are important for policymakers, companies, and investors, as well as long-term energy-based economic development.
Bağlantı
http://hdl.handle.net/20.500.12627/184036
https://doi.org/10.1016/j.resourpol.2022.102664
Koleksiyonlar
  • Makale [92796]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere Göre

Hesabım

GirişKayıt

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV