• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • Öğe Göster
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new distributed anomaly detection approach for log IDS management based on deep learning

Tarih
2021
Yazar
AYDIN, Muhammed Ali
ZAİM, ABDÜL HALİM
SERTBAŞ, Ahmet
Koca, Murat
Üst veri
Tüm öğe kaydını göster
Özet
Today, with the rapid increase of data, the security of big data has become more important than ever for managers. However, traditional infrastructure systems cannot cope with increasingly big data that is created like an avalanche. In addition, as the existing database systems increase licensing costs per transaction, organizations using information technologies are shifting to free and open source solutions. For this reason, we propose an anomaly attack detection model on Apache Hadoop distributed file system (HDFS), which stands out in open source big data analytics, and Apache Spark, which stands out with its speed performance in analysis to reduce the costs of organizations. This model consists of four stages: the first of which is to store instant data on HDFS in a distributed manner. In the second stage, the log data generated in the network traffic are analyzed by taking the data on Apache Spark and including the log data created by HDFS. In the third stage, the data preprocessing stage and with the CUDA parallel programming in the TensorFlow library, we apply our deep learning (cuDNN) method to the distributed anomaly detection with the computational support of GPUs. In the last stage, the generated alarms are recorded on HDFS again. We conducted comparative experiments with the approach we propose to detect cyberattack anomalies in log data management with the classification methods used in machine learning. The results obtained in these experiments appear to provide a promising gain in performance evaluation metrics compared to the other available methods.
Bağlantı
http://hdl.handle.net/20.500.12627/171805
https://doi.org/10.3906/elk-2102-89
Koleksiyonlar
  • Makale [92796]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere Göre

Hesabım

GirişKayıt

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV