• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • Öğe Göster
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new CNN training approach with application to hyperspectral image classification

Yazar
Kutluk, Sezer
Akan, Aydin
KAYABOL, KORAY
Üst veri
Tüm öğe kaydını göster
Özet
Three main requirements of a successful application of deep learning are the network architecture, a large enough training dataset, and a good optimization algorithm. In this paper we mainly focus on the optimization part. We propose a training algorithm for convolutional neural networks which makes use of both first and second order derivatives for training different layers. We utilize an approximate second order algorithm for the classification layer while we train the rest of the network with the conventional approach which is backpropagation with first order derivatives. We show that this approach helps us achieve a higher classification accuracy with a much smaller number of training iterations compared to training the whole network with gradient descent based algorithms. Moreover, although second order optimization is generally costlier, we show that the proposed approach is trained faster not only in terms of the number of iterations but also training duration. We also present the integration of CNNs with a probabilistic spatial model and apply this to the land cover classification problem in hyperspectral images. The results show that the algorithm allows us to achieve superior results with a simple network even with limited training data compared to existing approaches. (C) 2021 Elsevier Inc. All rights reserved.
Bağlantı
http://hdl.handle.net/20.500.12627/171538
https://doi.org/10.1016/j.dsp.2021.103016
Koleksiyonlar
  • Makale [92796]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere Göre

Hesabım

GirişKayıt

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV