• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • Öğe Göster
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A MapReduce-based distributed SVM algorithm for binary classification

Tarih
2016
Yazar
Catak, Ferhat Ozgur
Balaban, Mehmet Erdal
Üst veri
Tüm öğe kaydını göster
Özet
Although the support vector machine (SVM) algorithm has a high generalization property for classifying unseen examples after the training phase and a small loss value, the algorithm is not suitable for real-life classification and regression problems. SVMs cannot solve hundreds of thousands of examples in a training dataset. In previous studies on distributed machine-learning algorithms, the SVM was trained in a costly and preconfigured computer environment. In this research, we present a MapReduce-based distributed parallel SVM training algorithm for binary classification problems. This work shows how to distribute optimization problems over cloud computing systems with the MapReduce technique. In the second step of this work, we used statistical learning theory to find the predictive hypothesis that would minimize the empirical risks from hypothesis spaces that were created with the Reduce function of MapReduce. The results of this research are important for the training of big datasets for SVM algorithm-based classification problems. We provided the iterative training of the split dataset with the MapReduce technique; the accuracy of the classifier function will converge to global optimal classifier function accuracy in finite iteration size. The algorithm performance was measured on samples from letter recognition and pen-based recognition of a handwritten digits dataset.
Bağlantı
http://hdl.handle.net/20.500.12627/162003
https://doi.org/10.3906/elk-1302-68
Koleksiyonlar
  • Makale [92796]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere Göre

Hesabım

GirişKayıt

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV