• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • Öğe Göster
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Makale
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of the decision tree, artificial neural network and multiple regression methods for prediction of carcass tissues composition of goat kids

Yazar
EKİZ, Bülent
Baygul, Oguzhan
YALÇINTAN, Hülya
ÖZCAN, Mustafa
Üst veri
Tüm öğe kaydını göster
Özet
The aim of this study was to predict carcass tissue composition of goat kids using the decision tree with CHAID algorithm (DT) and artificial neural network (ANN) method in comparison with classical step-wise regression (SWR) analyse. Data were obtained from 57 goat kids of Gokceada breed. Predictor variables were pre-slaughter weight, several carcass measurements and indices, weights of different carcass joints and dressing percentage. R-2 values ranging from 0.212 to 0.371 indicating low to moderate accuracy were obtained for predicting muscle proportion. DT and ANN yielded similar R-2 values for predicting bone proportion. DT was the best prediction method for estimating proportions of subcutaneous fat (R-2 = 0.828) and intermuscular fat (R-2 = 0.789). According to DT analyses, cold carcass weight was the most important factor influencing bone proportion, while kidney knob and channel fat weight was the predominant factor influencing subcutaneous, intermuscular and total fat proportions. Consequently, the use of DT method can be considered to predict carcass fat proportions.
Bağlantı
http://hdl.handle.net/20.500.12627/15796
https://doi.org/10.1016/j.meatsci.2019.108011
Koleksiyonlar
  • Makale [92796]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere Göre

Hesabım

GirişKayıt

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV