L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats
Tarih
2009Yazar
Bezemer, Rick
Legrand, Matthieu
Almac, Emre
Mik, Egbert G.
Johannes, Tanja
Kandil, ASLI
İnce, Can
Payen, Didier
Üst veri
Tüm öğe kaydını gösterÖzet
Legrand M, Almac E, Mik EG, Johannes T, Kandil A, Bezemer R, Payen D, Ince C. L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats. Am J Physiol Renal Physiol 296: F1109-F1117, 2009. First published February 18, 2009; doi:10.1152/ajprenal.90371.2008.-Even though renal hypoxia is believed to play a pivotal role in the development of acute kidney injury, no study has specifically addressed the alterations in renal oxygenation in the early onset of renal ischemia-reperfusion (I/R). Renal oxygenation depends on a balance between oxygen supply and consumption, with the nitric oxide (NO) as a major regulator of microvascular oxygen supply and oxygen consumption. The aim of this study was to investigate whether I/R induces inducible NO synthase (iNOS)-dependent early changes in renal oxygenation and the potential benefit of iNOS inhibitors on such alterations. Anesthetized Sprague-Dawley rats underwent a 30-min suprarenal aortic clamping with or without either the nonselective NO synthase inhibitor N-omega-nitro-L-arginine methyl ester (L-NAME) or the selective iNOS inhibitor L-N-6-(1-iminoethyl) lysine hydrochloride (L-NIL). Cortical (C mu Po-2) and outer medullary (M mu Po-2) microvascular oxygen pressure (mu Po-2), renal oxygen delivery (Do(2ren)), renal oxygen consumption ((V) over doto(2ren)), and renal oxygen extraction (O2ER) were measured by oxygen-dependent quenching phosphorescence techniques throughout 2 h of reperfusion. During reperfusion renal arterial resistance and oxygen shunting increased, whereas renal blood flow, C mu Po-2, and M mu Po-2 (-70, -42, and -42%, respectively, P < 0.05), (V) over dot o(2ren), and Do(2ren) (-70%, P < 0.0001, and -28%, P < 0.05) dropped. Whereas L-NAME further decreased Do(2ren), (V) over dot o(2ren), C mu Po-2, and M mu Po-2 and deteriorated renal function, L-NIL partially prevented the drop of Do(2ren) and mu Po-2, increased O2ER, restored (V) over dot o(2ren) and metabolic efficiency, and prevented deterioration of renal function. Our results demonstrate that renal I/R induces early iNOS-dependent microvascular hypoxia in disrupting the balance between microvascular oxygen supply and (V) over dot o(2ren), whereas endothelial NO synthase activity is compulsory for the maintenance of this balance. L-NIL can prevent ischemic-induced renal microvascular hypoxia.
Koleksiyonlar
- Makale [92796]