• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Bildiri
  • Öğe Göster
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Bildiri
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Emotion Recognition Based on Spatially Smooth Spectral Features of the EEG

Yazar
ERBEY, Miray
Balli, Tugce
DENIZ, Sencer M.
CEBECI, Bora
Demiralp, Tamer
Duru, Adil D.
Üst veri
Tüm öğe kaydını göster
Özet
The primary aim of this study was to select the optimal feature subset for discrimination of three dimensions of emotions (arousal, valence, liking) from subjects using electroencephalogram (EEG) signals. The EEG signals were collected from 25 channels on 21 healthy subjects whilst they were watching movie segments with emotional content. The band power values extracted from eleven frequency bands, namely delta (0.5-3.5 Hz), theta (4-7.5 Hz), alpha (8-12 Hz), beta (13-30 Hz), gamma (30-50 Hz), low theta (4-6 Hz), high theta (6-8 Hz), low alpha (8-10 Hz), high alpha (10-12 Hz), low beta (13-18 Hz) and high beta (18-30 Hz) bands, were used as EEG features. The most discriminative features for classification of EEG feature sets were selected using sequential floating forward search (SFFS) algorithm and a modified version of SFFS algorithm, which imposes the topographical smoothness of spectral features, along with linear discriminant analysis (LDA) classifier. The best classification accuracies for three emotional dimensions were obtained for liking (72.22%) followed by arousal (67.50%) and valence (66.67%). SFFS-LDA and modified SFFS-LDA algorithms produced slightly different classification accuracies. However, the findings suggested that the use of modified SFFS-LDA algorithm provides more robust feature subsets for understanding of underlying functional neuroanatomic mechanisms corresponding to distinct emotional states.
Bağlantı
http://hdl.handle.net/20.500.12627/110397
https://doi.org/10.1109/ner.2013.6695958
Koleksiyonlar
  • Bildiri [64839]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere Göre

Hesabım

GirişKayıt

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV