Bir Öğrenci Bilgi Sisteminin Kullanılabilirliğinin Makine Öğrenmesi Teknikleriyle Tahmin Edilmesi
Tarih
2019Yazar
Kartal, Elif
Gülseçen, Sevinç
Şeneler , Çağla
Demirkol, Denizhan
Üst veri
Tüm öğe kaydını gösterÖzet
Sistem kullanılabilirliği, bir sistemin özellikle tasarım ve test aşamalarında odaklanılması gereken unsurlardan biridir, çünkü sistemin daha iyi hale getirilmesi için sistem yöneticilerine geri bildirim sağlamaktadır. Literatürde, sistem kullanılabilirliğinin değerlendirilmesi için Sistem Kullanılabilirlik Ölçeği (System Usability Scale-SUS) altın standart yöntem olarak yaygın şekilde kullanılmaktadır. Bunun yanı sıra günümüzde yapay zekânın alt çalışma alanlarından biri olan makine öğrenmesi de sistem kullanılabilirliğinin değerlendirilmesi konusunda araştırmacılara yeni ufuklar sağlamaktadır. Bu çalışmada, bir Öğrenci Bilgi Sisteminin (ÖBS) kullanılabilirliğinin makine öğrenmesi teknikleriyle tahmin edilmesi hedeflenmiştir. Çalışma yönteminde; Veri Madenciliği için Çapraz Endüstri Standard Süreç Modeli (CRoss-Industry Standard Process for Data Mining–CRISP-DM) kullanılmıştır. Analizler; Türkiye’deki bir vakıf üniversitesine ait bir ÖBS’yi kullanan 324 öğrencinin SUS’un Türkçe versiyonuna (SUS-TR) verdiği yanıtların bulunduğu “sus1” adlı veri seti ile “sus1” veri setine öğrencilerin yaş, cinsiyet, öğrenim gördüğü bölüm eklenerek oluşturulan “sus0” adlı veri setleri üzerinde gerçekleştirilmiştir. C4.5 Karar Ağacı Algoritması, Naive Bayes Sınıflandırıcı ve k-En Yakın Komşu Algoritması ile farklı modeller kurularak performans değerlendirmesi yapılmıştır. %80’e %20’lik Hold-out ayrımıyla gerçekleştirilen analizlerde en iyi performans, k-En Yakın Komşu Algoritmasıyla “sus0” veri seti üzerinde elde edilmiştir (k=20 için doğruluk = 0.698, F-ölçütü = 0.796).
Bağlantı
http://hdl.handle.net/20.500.12627/107316https://dergipark.org.tr/tr/pub/veri/issue/47049/489216
Koleksiyonlar
- Makale [92796]