• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Bildiri
  • Öğe Göster
  •   Açık Erişim Ana Sayfası
  • Avesis
  • Dokümanı Olmayanlar
  • Bildiri
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluation of Machine Learning Algorithms for Automatic Modulation Recognition

Yazar
Hazar, Muhammed Abdurrahman
Ensari, Tolga
Odabasioglu, Niyazi
Kavurucu, Yusuf
Üst veri
Tüm öğe kaydını göster
Özet
Automatic modulation recognition (AMR) becomes more important because of usable in advanced general-purpose communication such as cognitive radio as well as specific applications. Therefore, developments should be made for widely used modulation types; machine learning techniques should be tried for this problem. In this study, we evaluate performance of different machine learning algorithms for AMR. Specifically, we propose nonnegative matrix factorization (NMF) technique and additionally we evaluate performance of artificial neural networks (ANN), support vector machines (SVM), random forest tree, k-nearest neighbor (k-NN), Hoeffding tree, logistic regression and Naive Bayes methods to obtain comparative results. These are most preferred feature extraction methods in the literature and they are used for a set of modulation types for general-purpose communication. We compare their recognition performance in accuracy metric. Additionally, we prepare and donate the first data set to University of California-Machine Learning Repository related with AMR.
Bağlantı
http://hdl.handle.net/20.500.12627/105171
https://doi.org/10.1007/978-3-319-26532-2_23
Koleksiyonlar
  • Bildiri [64839]

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV
 

 


Hakkımızda
Açık Erişim PolitikasıVeri Giriş Rehberleriİletişim
sherpa/romeo
Dergi Adı/ISSN || Yayıncı

Exact phrase only All keywords Any

BaşlıkbaşlayaniçerenISSN

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTürlere Göre

Hesabım

GirişKayıt

Creative Commons Lisansı

İstanbul Üniversitesi Akademik Arşiv Sistemi (ilgili içerikte aksi belirtilmediği sürece) Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

DSpace software copyright © 2002-2016  DuraSpace
İletişim | Geri Bildirim
Theme by 
Atmire NV