Mechanical and Thermal Properties of Wood-Plastic Composites Reinforced With Hexagonal Boron Nitride
Tarih
2014Yazar
Ozdemir, Ferhat
Ayrilmis, Nadir
Kwon, Jin Heon
Dundar, Türker
Kaymakci, Alperen
Üst veri
Tüm öğe kaydını gösterÖzet
Mechanical, thermal, and morphological properties of injection molded wood-plastic composites (WPCs) prepared from poplar wood flour (50 wt%), thermoplastics (high density polyethlyne or polypropylene) with coupling agent (3 wt%), and hexagonal boron nitride (h-BN) (2, 4, or 6 wt%) nanopowder were investigated. The flexural and tensile properties of WPCs significantly improved with increasing content of the h-BN. Unlike the tensile and flexural properties, the notched izod impact strength of WPCs decreased with increasing content of h-BN but it was higher than that of WPCs without the h-BN. The WPCs containing h-BN were stiffer than those without h-BN. The tensile elongation at break values of WPCs increased with the addition of h-BN. The differential scanning calorimetry (DSC) analysis showed that the crystallinity, melting enthalpy, and crystallization enthalpy of the WPCs increased with increasing content of the h-BN. The increase in the crystallization peak temperature of WPCs indicated that h-BN was the efficient nucleating agent for the thermoplastic composites to increase the crystallization rate. POLYM. COMPOS., 35:194-200, 2014. (c) 2013 Society of Plastics Engineers
Koleksiyonlar
- Makale [92796]